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Cardinal Interpolation by Multivariate Splines 
By C. K. Chui,* K. Jetter, and J. D. Ward 

Abstract. The purpose of this paper is to investigate cardinal interpolation using locally 
supported piecewise polynomials. In particular, the notion of a commutator is introduced and 
its connection with the Marsden identity is observed. The order of a commutator is shown to 
be equivalent to the Strang and Fix conditions that arise in the study of the local approxima- 
tion orders using quasi-interpolants. We also prove that scaled cardinal interpolants give these 
local approximation orders. 

Introduction. Cardinal interpolation by bivariate box splines was first studied by 
de Boor, H6llig, and Riemenschneider [3]. The purpose of our paper is to investigate 
the cardinal interpolation problem from a different point of view. In particular, the 
notion of a commutator is introduced. It will be shown that this notion generalizes 
the Marsden identity for univariate splines to the multivariate setting. The order of a 
commutator will be shown to be equivalent to the Strang and Fix conditions used in 
the study of the order of controlled approximation by Dahmen and Micchelli [8] or 
local approximation by de Boor and Jia [4]. An application to obtain approximation 
orders through the constructive method of scaled cardinal interpolation will also be 
studied in this paper. 

1. Preliminaries. This section consists of preliminary material for multivariate 
cardinal interpolation. Our approach is motivated by the work in [5] and [13] where 
cardinal interpolation in 12 was connected with certain convolution operators LX. 

Let Z denote the set of integers and Z+, the nonnegative ones. For any given 
complex sequence c - ( Zj)j zN E 11(ZN) we denote the discrete Fourier transform 
of ' by 

+(( = S ii'(4E RN, 
j jE ZN 

and extend '((), at least formally, to all of CN by defining 

a,(z)= ? cjzI 
j G ZN 
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where the usual multivariate notation ZJ = ZJI Zj$, I = ZJ IN) Z = 

(z1, ... v ZN), is used. Since the series that defines 4 is absolutely and uniformly 
convergent, 4 is a continuous function and 27T-periodic with respect to each 
variable. Moreover, any 4 = {j =- ZN E 11(ZN) also defines a convolution operator 
on lP, 1 < p < 00, given by v = L+(yt) where ti = {J}, v = {v1}, and 

Vj = E Oj-k/k, i C ZN. 

kEZN 

More generally, for a given continuous 4 on RN having compact support, 

L,,(p)(x):= L +(X -k)Pk 
k C=ZN 

kezN~~~ 
defines a continuous function on RN whose restriction to ZN gives rise to a map 
from lp(ZN) into itself. Hereafter, L,([t) will denote either a function on RN or a 
map on Ip depending on context. In the case L.(.) is a map on lp(ZN), L,(-) is a 
bounded linear transformation and 

|| Lo(L) Ilp < 11 0 III ItI'p, 1 < p < X. 

In the following we shall deal with sequences with finite support, 4IZN, where 4: 
RN -, R is a piecewise polynomial function with compact support. For short, we call 
such 4 a locally supported spline, or ls-spline. Under these assumptions, 4, as 
defined above, is a trigonometric polynomial. 

Consider the following problem of cardinal interpolation with translates of 4: 
Given the data v E lp(ZN), determine the existence and uniqueness of a sequence 

[ E lp(Z') such that L.(,p)(x) interpolates the data v, i.e., LO(G)IZN = v. If the 
answer is affirmative, we will say that the problem is Ip-solvable (for p = oo, de Boor 
et al. [3] use the notion "correct"). It turns out that the problem of cardinal 
interpolation with translates of 0 is Ip-solvable if and only if the corresponding 
convolution operator L.: lp -I lp is invertible. Indeed, the requirement that any lp 
sequence can be interpolated uniquely requires L. to be one-to-one and onto. Since 
L is continuous, an application of the Banach inverse theorem shows that L`1 is 
bounded. The following lemma, which is related to [5, Theorem 7] will be needed in 
Sections 2 and 3. 

LEMMA 1.1. For any EC l1(ZN) the following statements are equivalent: 
(i) LO: 12 12 has a continuous inverse. 

(ii) LO: Ip Ip has a continuous inverse for allp, 1 < p < oo. 
(iii) The symbol a, of 4 does not vanish on TN:= {(Z1,. ..I ZN) E CN: IZ1I = 1, 

i = 1, ...,lN}. 

The proof of the above lemma involves standard arguments using Fourier trans- 
form techniques. 

Remark. It is not hard to verify that L.: 12 -> 12 is a symmetric operator if and 
only if 0 is Hermitian (i.e., ?_- = (p, j E ZN). In this case, 0 is a real function, 
continuous and 2,g-periodic with respect to each variable, and condition (iii) of 
Lemma 1.1 may be written as 

sgn (O) k (() > Co > 0 for all C [E- 7T, T ]N. 
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Using Lemma 1.1 and the characterization of lo.-solvability which appeared in [3] 
and [7], the following can be established. 

PROPOSITION 1.1. Let 4: RN -, R be a piecewise polynomial function with compact 

support. Then the following statements are equivalent: 
(i) The problem of cardinal interpolation with translates of f is 12-solvable. 

(ii) The problem of cardinal interpolation with translates of 4 is Ip-solvable for all p, 
1 p < x0. 

(iii) The symbol a. corresponding to L. does not vanish on [T- , 7 ] N. 

(iv) The problem of cardinal interpolation with translates of 4 is lo.-solvable. 

2. The Fundamental Functions. This section is devoted to extending Schoenberg's 

univariate results [11] on characterizing the cardinal spline interpolant of L = (So,,) 
where AI j denotes the Kronecker symbol. In particular, the exponential decay of the 

" spline" solution is obtained for the multivariate case. 

Hereafter, assume that the symbol aX, does not vanish on TN, so that 1I(0) >I C,x 

> 0 on RN. This follows since qi() = >j2i k e1j 
- 

- a=(z)ITN. By Lemma 1.1, there is 

one and only one sequence X E l1(ZN) satisfying 

80,i =Di-yjj i E ZN. 
j 

In addition, for the sequence 8 := (80 i) E ZN, we have 1 = 8 = qX and, hence, 

( 2,r 
N 

) t, X ]N f ( ( ) 

Now let i ( := q(j) satisfy the above with 4 a piecewise polynomial function of 

compact support. With X E l1(ZN) as defined above, set 

L(x) = EXj1(x -j). 

We call L the fundamentalfunction associated with q since 

L(j)= 80,j, jE ZN. 

The following proposition was observed in [3]. 

PROPOSITION 2.1. L decays exponentially. More precisely, there exists a constant 
A > 0, depending on 0, so that 

IL(x) I < Aexp(- Ix I/A), x E RN. 

Using Lemma 1.1 and the above proposition, the following multivariate generali- 

zation of a well-known univariate result (cf. [12], [13]) can be easily established. 

PROPOSITION 2.2. Let d E yp(ZN), 1 < p < x, and 

S(x) = L Co+(x - j) with C E- lp(ZN) 
j E ZN 

be the function interpolating the data d; that is, 

S(j) = dj, j EZ N. 
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Then 

S(x) =Y. d1L(x-j), 
jcE ZN 

where the series is uniformly convergent on compact subsets of C N. 

3. The Commutator of q. Motivated by the work of Frederickson [9], we introduce 
in this section the notion of the "commutator" of an Is-spline with a polynomial. For 
univariate B-splines with equally-spaced knots, it is equivalent to Marsden's identity 
[14, p. 125]. Proposition 3.1 will show that the commutator is also related to the 
order of approximation, in view of results of Strang and Fix [15] or Dahmen and 
Micchelli [8]. 

Throughout this section, q: RN -- R will denote a piecewise polynomial function 
with compact support, or ls-spline, and Pn the space of polynomials in N variables 
with total degree n. In order to avoid irregular cases, we shall also assume from now 
on that Ek E ZN 0(* - k) = 1, in which case we call 0 normalized. The properties of 
the map f -- L,,(f ), i.e., the properties of translates of q, have been considered in a 
bulk of papers (cf. [15], as an early reference, or [7] and the references therein). Here, 
we go one step further and consider the commutator of q and a continuous function 
f, which we define by 

(3.1) [l f ](x):= (Lo (f -Lf (0))(x) 

E L (x - k)f(k) - Ef(x - k)p(k), 
kEZN kEZN 

for x E RN. The notion of the commutator of q appears to be new even in the case 
of univariate B-splines q. 

Definition 3.1. The commutator of q is said to be of order m E N or degree m - 1 
if 

(3.2) I f ]=O for all f C Pm. 

Note that if [qi I f ] = 0 for some polynomial f, we have a polynomial expressed as 
a linear combination of ls-splines. 

We first wish to characterize those ls-spline functions q with commutator of order 
m while maintaining the assumption that q is normalized. In the following result, 
the equivalence of conditions (iii) and (iv) have been derived by Strang and Fix [15, 
Theorem I]; they have shown that, equivalently, the approximation order by 
quasi-interpolation using translates of q is equal to m. Condition (ii) is due to de 
Boor (private communication) and its equivalence with (i) is essentially proved in [4]. 

We first remark that via the Poisson summation formula it is clear that q is 
normalized if and only if O(M) = 1 and qi(j) = O, j # 0. 

PROPOSITION 3.1. Let q be a normalizedpiecewise polynomialfunction with compact 
support. Then the following statements are equivalent for any m E N. 

(i) The commutator of q has order m. 
(ii) For allf E Pm-11 L,$,(f) is a polynomial. 

(iii) For any a C ZN with IaI < m and f(x) = xa the function f - Lo(f) is a 
polynomial of degree I aI - 1. 

(iv) D'(2vk) = Oforallk where 0 * k E ZN and IlI <mandk (0) # O. 
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Proof. (iii) (iv): As mentioned above, this equivalence was derived by Strang 
and Fix [15, Theorem I]. 

(i) (ii) is trivial, since if f is in Pm_l' Lf (4) is a polynomial in P,aj with leading 
term [Ek E ZN 4)(k)]x' = x'. 

(ii) * (i): Since [i I f I (i) = 0 for all i E ZN, it follows that (LO1,(f Lf(4))) I ZN 

= 0, where both L,,(f ) and Lf (4) are polynomials since f is a polynomial. Hence, 

L,(f)=Lf(o) or [11f]=0. 

(i) (iii): This implication is obvious since Lf(4) is a polynomial in P,a, with 
leading term [Ek E zN ZN(k)]x' = x'. 

(iv) (i): If A(x) = xa4)(t - x), then, since 

[(-ix)a'O(t-x)f(() = D44)(t-x)V(() = 

we obtain 

Eka4)(x - k) = ilaID a(e-zt xq(-)) 
k k =2rk 

(3.3) - E ( 

f3 <a k 

So if (iv) holds, then (3.3) implies that 

Ek?(x - k) = E (-i) iI(A)Da D (0)X# 
k 3<Ca 

for Ilal < m. On the other hand, 

E+(k)(x - k) a = ExE+(k)ka 
k < Ca k 

and Poisson's formula for 4I(x) = 4)(x)xa` yields 

E ( k)k ai - =E (x`a-(x))^(27Tk) 
k k 

= i aI-Ifi D a -f4) (2 7k ) - ji l- IfiID a -fl?(o) 
k 

for la - /I < m. Hence, 

jjka4(x - k) = Y.O(k)(x - k)a for lal < m. 
k k 

This completes the argument. 
Remark. The same proof applies for the coordinate order m E ZN of 4), which is 

defined by [) I 1f1 = 0 for all f(x) = xa with a( < min, i = 1,..., N. Here, state- 
ments (ii) and (iii) hold for a E Z[ with ai < mi, i = 1,..., N. 

Since (qi * t) = ?)T where f * g denotes the convolution of f and g, the following 
is obtained as a corollary of Proposition 3.1 which, in case of Frederickson's 
triangular splines [9], is an equivalent formulation of his Lemma 6.1. 

COROLLARY 3.1. If 4 and T are normalized piecewise polynomials with compact 
support and with commutator of order m and n respectively, then 4) * T is a normalized 
piecewise polynomial with compact support and with commutator of order m + n. 
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Proof. Indeed, 

D ()t(()) = E (g)DO(27Tk)Da qI(27Tk) = 0 

for k 0 0 and lal < m + n, since lal < m + n and 1I/I > m implies Ia - 1= lal - 

1,B1 < n; also, qi * ' is normalized since 

E *)(k) (2iTk)+(2 rk) = q(o)4(0) = 1. 
k k 

Example 3.1. Let I = [- 2, 2] and XA denotes, as usual, the characteristic 

function of A. With Mo:= XIN, Mm: = Mm-l * XIN, m > 1 we find that Mm has a 

commutator of order m + 1. For N = 1 the recurrence relation above defines the 

symmetric cardinal B-splines; in case N > 1 we have the corresponding tensor 

product splines. Note that 

i=1( 2 /2) 

Example 3.2. The (symmetric) box splines may be introduced by their Fourier 

transform [2]. Given the fixed nonzero vectors , n. ., n E RN, then q = M is 

the inverse Fourier transform of the product function 

qi(()= rI sin 2/' . 

In case 

41 . In =el,..., el, e2, .e2 .... eN ..., eN, n = N(m + 1), 

m +1 m +1 m +1 

we evidently get q = Mm of the previous example; and according to Proposition 3.1, 

we have that the box spline Mi= .., t, yields a commutator of order at least m if 

Mm_ 1is a divisor ofq. 

Example 3.3. An important special case of the previous example is the bivariate 

box spline (the Courant hat function) q = B1 1l, where 

- sin x/2 sin y/2 sin(x + y)/2 

x/2 y/2 (x?+y)/2 
The commutator of B1,11l clearly has order 2. Thus Frederickson's bivariate box 

splines [9] 

Bnnn-I = Mo * Bn-l,n-l,n-11 Bn,n,n = B1 1 1 * Bn-l,n-l,n-1, n > 1, 

yield a commutator of order 2n - 1 and 2n, respectively. 

We next observe how Marsden's identity for the univariate cardinal B-splines can 

be derived using the order of the commutator of the symmetric cardinal B-spline 

?>(x) = Mm-i(x) = No,m(x + m/2) 

with 

Nom(x) = m[O, ..., m]( -x)+M-, 

where [xl, .. ., xklf denotes, as usual, the divided difference of f with respect to the 

knots xl, .. ., Xk. This motivates a Marsden's identity for multivariate splines. Recall 

from Example 3.1 above that Mm_ has a commutator of order m. Now, 

xn(- 

xM 1= MM-,(x?ym- k)Hl(k -r) =pm-(x), 
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since po(x) = 1, p_1(x)p = (m - 1)Pn2(X), and P-l(O) = 0 for m > 3. Setting 
f(x) = HlJj1(x - r) we obtain 

(x - m/2)rn1 = LMm i(f )(X) = Lf (Mm- 1)(X) 

m-1 
= Mmrl(k) H (x + k - r), 
k r=1 

since Mm_ is symmetric. With x replaced by y - x and fy(x) := H -L7(y - x - r), 
we arrive at 

(y - x) = Lfj(Mm1)(x- m/2) = LMm_,(fy)(x -m/2) 

=No,m((x -k) H (y- k-r), 
k r=l 

which is Marsden's identity. 
In extending this idea to the multivariate setting, we associate with + the 

recursively defined polynomials: go(x) = 1, and for jai > 0, 

ga(x) = xa- E ?(k) ? (a(-k) g(x), 
kEZN f3 a 

13*a 

and obtain the following result. 

THEOREM 3.1. For a normalized piecewise polynomial function 4 with compact 
support and m E N the following statements are equivalent: 

(i) The commutator of 0 is of order m. 
(ii) The polynomial reproducing formula 

x a = g.(j)q(x-j) holdsfor Jai < m. 
j E ZN 

Remark. In the univariate case, where +(x) = Mm(X M m/2) and a = m-1 
it follows that 

m-1 
gm-l(x) =H (x - r), 

r=1 

since the representation of x m- through translates of 4 is unique in this case. 
Proof of Theorem 3.1. There is nothing to prove in case m = 1, since we assumed 

+ to be normalized. Now assume that the proposition has been proved with m 
replaced by m - 1. Since, for all a E + 

? (k)(x -k) = (k) ? A( xA 
kEZN kEZN f3 a 

= xa + (k) 
a 

(-k) x 
kEZN 3<a 

13#a 
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we may proceed in the induction step as follows. Suppose (i) holds. Then for 

jai = m - 1, it follows that 

E j f( (-j) = (pf(k)(x -k)a 
j]ZN keZN 

= xa ?+ ( (k) 
a 

( -)(-k)a 
- 

gfi(j)4.(X -j) 
kEZN 6of jEZN 

and 

xa ,( ja X,((k) 
a 

(A(-k) a- Ag(j) O(X-j) 
j EZN kzZN f3< a 

- E ga(j)>(x -j) 
j e ZN 

so that (ii) also holds. On the other hand, in order to show (ii) = (i), observe that 

E f (k)(x -k)c 
keZN 

= E g (j)<)(x -j) + E *,(k) E ( -)(-k) 9# g(j) (X -j) 
jEZN kEZN f3<a jEZN 

= 

EZNga(j) 

+ Y ,(k) E ( 
-)(-k) agf() }(x 

-j) 
jez N k kEZN f3a 

f3a 

J Z (xN - . 

This concludes the proof. 
Remark. Theorem 3.1 again holds for the coordinate order, in which case (ii) 

holds for ati < mp, i = 1, ... ., N. 
For the nontensor multidimensional box splines there are interesting examples of 

this recurrence relation. For instance, for a C1 quadratic box spline M on the 
four-direction mesh with directions { el, e2, el + e2,el - e2}, where el = (1, 0) and 
e2= (0, 1), we get for k:= (kl, k2), x := (xl, x2), 

EM(x - k) = 1, Ek,M(x - k) = xl, Ek2M(x- k) = X2 
k k k 

E(k 2 _1/4) M(x - k) = Xl2, ?(k22 _ 1/4) M(x -k) = X2, 
k k 

and 

k1k2M(x - k) = X1X2. 
k 

More generally, if we have the directions 

{el,...,el, e2,...,e2, el + e2,...,el + e2, el - e2,....el -e2 

j k l m 
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n = j + k + 1 + m, and M is the corresponding box spline on the above four-direc- 
tional mesh, we have, for a + 3 < r, 

(kl, k2) _Z2 1w,<(n+l)/2( ) +0=2w (aY(t 0) A )!k- -| 

M((x- kl, y -k2)) 

where 

a-y,2w-'y S S YlpY2v-2p (1)s E Y uy?(2Y)(2 s) 
t+2p=y u+v=w U+V=t V+S=U 

As a final connection along these lines we wish to relate the polynomials ga 
derived in Theorem 3.1 and the quasi-interpolant operator used by Strang and Fix 
[15] and others, in order to derive their approximation orders. 

If 4 is normalized and has commutator of order at least one, then by Poisson's 
summation formula, 4(O) = 1, so that [Na(t)]1 = ? a is analytic at 0 = 0. 
Define the quasi-interpolant for polynomials by 

(Qf )(x) = E (D,f )(k)g)(x -k), 
k e ZN 

where 

(Df)= E iD f 

with D = (a/axl, ... I, a/ax) (cf. [6]). 

THEOREM 3.2. If the commutator of 4 is of order m, then 

D1(xa) = g.(x) for lat < m. 

Proof. We show that both ga, and D,,(xa) satisfy the same recurrence formulas for 
lal < m. For a = 0, it follows that 

J40(1) =ao= 1o Dg>() =a= 
)(0) = 1 =gO. 

For lal > 0 we have to show that for the case lal < m, 

x = E 4)(k) E (-k) D.(x). 
keZN ,8<a 

The right-hand side is given by 

kE 
0(k 

D(,ga (l k) xI 
= 

D4, E (k)(x -k)a) kE zN -ft7a/ keZN 

k e( ZN 

where the last equality holds using the order of the commutator. Now by Poisson's 
summation formula and Proposition 3.1, 

? k +(x -k) F= a (-i) (x)Da-#+(O)x#9 
k ezN 8 <a 
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since Dak(2,rk) = 0 for lal < m and 0 # k E ZN. Using the expansion ?(t)= 
E zN bA,, we get 

D4 E k (4(x - k)) = () D (0)D,(x 
k ZN '8a ,a_ _ 

= ? (-i) ,B!baa b, aye /3! -7 

= ?L(-i) 13! be, ? ay (-i) Y 
ft?a yS:fi 

= ? (-i) a-y ? baj3a,_y = x 
Y< ~ ~~ !- -Ay 'Y<< 

since 

be a b _ffjy= be,jf-ij3 =, { 1 ifa --y=0, 
? bf~ as ft y = ? ba- 7 ( o0 otherwise, 

which can be verified by equating coefficients in 

1=()[ (t)]-1 = ?b.a '8as6 = ( ba# )1Y. 
a ft j +f==-y 

The proof is complete. 
This theorem yields an interesting result related to the work in [6]. In our case, the 

quasi-interpolator is given explicitly. 

COROLLARY 3.1. Under the same assumptions as above, Qf = ffor allf E Pm 1 

Proof. For f (x) = xa, I < m, it follows that 

Qf= (D4f )(k)>( - k) = >ga(k)cIf - k) = xa 
k k 

according to the polynomial reproducing algorithm. 

4. Approximation Orders Using Scaled Cardinal Interpolation. Various authors 
have dealt with approximation orders from translates of functions 4 ([2], [4], [8], [9], 
[15]) using various quasi-interpolation methods. In view of the results in [4] and [8], 
this approximation order is the same for all Lp-norms, 1 < p < oo. It is therefore 
interesting to see that these orders can be obtained from the constructive method of 
scaled cardinal interpolation. This has already been pointed out by Bramble and 
Hilbert [5] in the tensor product case. We extend their results to the general case, 
and it again turns out that the notion of the commutator is central to the arguments. 

For the rest of this section, the following assumptions based on Proposition 1.1 
will be needed: 4: RN -* R is a piecewise polynomial function with compact 
support which is 

(i) nonnegative (4(x) > 0 for every x), 
(ii) normalized (4k EzN( - k) = 1), 

(iii) lau(z)l > c,, > 0, z E TN. 
These assumptions will hereafter be referred to as Conditions A. 
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Scaled cardinal interpolation refers to interpolation relative to the scaled multi- 
integers Zh:= hZN, and the scaled function 0h is given by 4h(X):= 4(x/h), h > 0. 
By analogy with the unscaled case, we say that the problem of scaled cardinal 
interpolation is Np-solvable, if for any v E there is a unique u E lp(ZhN) 
satisfying 

(4.1) Lh( N = V. 

The scaled discrete Fourier transformation is given by 

U(t) = hN E u(j)eiiA ' E RN, 
jE ZNh 

and hence the scaled symbol of 4 satisfies 

(4.2) hPh(=) h N f O eh(I)e = hN V O(k)eihk-C = h< (h9 
Ne~ kE-ZN j E zN1 kEz 

where 4 is the discrete Fourier transform of '. Thus, Proposition 1.1 can be applied 
and shows that, given 

V = f |ZN EI h 

there is a unique u E lp(ZhN) satisfying (4.1) and, correspondingly, 
Sh: f-> L h(f) 

gives rise to an operator of scaled cardinal interpolation. Moreover, if f E COOO(RN), 
the subspace of C??(RN) of functions with compact support, then 

(a) Sh(f)^= -f and 
(4.3) 

(b) (Sh(f) -f f= [h I f ] ; 

where 

[+h If I= Lh( f ) -Lf(Oh) 

= hN{ E h(X - k)f(k) - E f(x - k)4h(k)). 
keZN ZN 

We see that (a) above follows directly from [5, Theorem 8]. To see (b), note that by 
(a) 

(Sh(f) _f) =h_- 1] 

while the equalities Lf(4) = !f and L+(f)= of again follow from [5, p. 122]. 
Finally note that since 

I[Oh I f 1(hx) =h N[01 f (h * )] (x), 
the order of the commutator is invariant under scaling. 

The following L2-estimate (Theorem 4:1) for order of approximation by scaled 
interpolation is proved using ideas of [51, along with arguments that rely on the 
commutator. First recall the following fundamental theorem in [5, Theorem 2] 
where, for 1 < p < oo, R is a bounded domain in RN satisfying the strong cone 
property, and p is the diameter of R. The seminorms are defined by 
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and 
k 

k|UI|| ,p,R = R P'<UI|,P,R. 
J =O 

THEOREM BH. Let F be a linear functional on H k(R) which satisfies 

(i) IF(u)I < CIIUIIk,p, R for all u E Hk(R) with C independent of p and u, and 
(ii) F(p) = 0 for allp E Pk-1' 

Then IF(u)I < ClpkluIk,p, R for any u e Hk(R) with C1 independent of p and u. 

We are now ready for the main result of this section. It generalizes [5, Theorem 9] 
which proved the result for tensor product splines. 

THEOREM 4.1. Let 4 satisfy Conditions (A). If 4 has a commutator of order 
m > N/2, then there exists a constant K > 0 so that 

IISh(f) -f 112 < Khmlf Im,27 fe CO (RN), 
with 

If I,2= I IIDafII2= 
1 

J IDaf(x)2 dX 
IaI=m IaI==m RN 

being the usual Sobolev seminorm of order m. 

Proof. Using (4.2) and (4.3) together with Parseval's identity yields 

IISh(f) _fII112 1_I(hf f)_112_ c2I2NIIkf1 2 
12 N1 I(Sh (f )- ^|2 

, Cf 2 h Oh+ I f 11l2' 
(27w)4 h 

In order to estimate the right-hand side, we first consider 

Fh(f; x):= hN [Oh f](x) X (h(X - k)f(k) -f(x - k)4h(k)). 
k eZh 

For fixed x, Fh(f; x) only depends on f I RX with 

R =x + hK [2 N, 

where K is chosen in such a way that 

supp[o] C K[ -2 N. 

We interpret Fh(.; x) as a functional on the Sobolev space H2m(Rx) and apply 
Theorem BH. 

Clearly, Fh(p; x) = 0 for polynomials p e Pn-1, because of the order of the 
commutator, and 

IFh(f; X) | SUp If(Y) Oh (kih(x - k) I + IOh(k)|) = 2 sup If(y) 
teRx kEZhN YeRx 

The last equality follows since 4 is nonnegative and normalized, and the commuta- 
tor of O is of order at least one. Hence, 

I (Ph (X -k)| (P f(X - k) = E f 
k^N NkeZ,$ keZN 

h 

kEN h ZN 

Now (4.3) together with Sobolev's lemma [1, p. 32] implies that 
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since m > N/2, where the constant C is independent of x and h. Since the diameter 
R is given by p = hKVN, Theorem BH yields the pointwise estimate 

IFh( f; x)l <, C`hmIf Im,2,R x 

with the constant C' independent of x and h. 
The proof is completed by writing If 1 as a convolution, namely, 

I12 if2d 
mfr,2,Rx= :NJ jDaf (y) dy 

lal=m (hKV)IRx 

I-Hrn (EK- K)N I I Df (x -Y)|dy 
Val=m (hKl Rr 

( ) y E (gRo IDaf|)(x) 

with 

gR0(y) = (hK)N forye hK[-2 21 =RO 

0 O otherwise. 

Since JRN IgRO(y)I dy = 1, we finally obtain 

h -2NII[4h f1 |N IFh(f; x) Idx < Mh2m IfI ,2,Rxdx 

< Mh2m 2 m 
N (gRo*Daf 12)(X) dX 

< Mh2m E 
IIDafIf2= Mh2mIf Im,2 

lal=rn 

where M and AF are constants. This completes the proof of the theorem. 
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